Рабочая программа разработана на основе программы курса химии для 8-11 классов общеобразовательных учреждений (автор О.С. Габриелян. - М.: Дрофа, 2014.)

Согласно учебному плану учреждения на реализацию программы в 11 классе отводится 1 час в неделю, 34 часа в год. Рабочая программа реализуется через УМК: Габриелян О.С. Химия 11 класс. Учебник для общеобразовательных учреждений. Базовый уровень.— М.: Дрофа, 2014.

Раздел 1. Требования к уровню подготовки учащихся.

- ▶ Программа предусматривает формирование у учащихся общеучебных умений и навыков, универсальных способов деятельности и ключевых компетенций: умение самостоятельно и мотивированно организовывать свою познавательную деятельность; использование элементов причинно-следственного и структурно-функционального анализа; определение сущностных характеристик изучаемого объекта; умение развернуто обосновывать суждения, давать определения, приводить доказательства; оценивание и корректировка своего поведения в окружающем мире.
- ▶ При выполнении творческих работ формируется умение определять адекватные способы решения учебной задачи на основе заданных алгоритмов, комбинировать известные алгоритмы деятельности в ситуациях, не предполагающих стандартного применения одного из них, мотивированно отказываться от образца деятельности, искать оригинальные решения. Учащиеся должны научиться представлять результаты индивидуальной и групповой познавательной деятельности в форме исследовательского проекта, публичной презентации. Реализация поурочно-тематического плана обеспечивает освоение общеучебных умений и компетенций в рамках информационно-коммуникативной деятельности.
- ▶ Требования к уровню подготовки обучающихся включают в себя как требования, основанные на усвоении и воспроизведении учебного материала, понимании смысла химических понятий и явлений, так и основанные на более сложных видах деятельности: объяснение физических и химических явлений, приведение примеров практического использования изучаемых химических явлений и законов. Требования направлены на реализацию деятельностного, практико-ориентированного и личностно ориентированного подходов, овладение учащимися способами интеллектуальной и практической деятельности, овладение знаниями и умениями, востребованными в повседневной жизни, позволяющими ориентироваться в окружающем мире, значимыми для сохранения окружающей среды и собственного здоровья.

В результате изучения предмета учащиеся 11 класса должны:

Обучающийся должен знать:

- **важнейшие химические понятия:** вещество, химический элемент, атом, молекула, атомная и молекулярная масса, ион, аллотропия, изотопы, химическая связь, Электроотрицательность, валентность, валентность, степень окисления, моль, молярная масса, молярный объём, вещества молекулярного и немолекулярного строения, растворы, электролит и неэлектролит, электролитическая диссоциация, окислитель и восстановитель, окисление восстановление, тепловой эффект реакции, скорость химической реакции, катализ, химическое равновесие;
- **основные законы химии:** сохранения массы веществ, постоянства состава, периодический закон;
- **основные теории химии:** химической связи электролитической диссоциации;
- » важнейшие вещества и материалы: основные металлы и сплавы, серная, соляная, азотная, кислоты, щёлочи, аммиак, минеральные удобрения;

Обучающийся должен уметь:

- **называть** изученные вещества по «тривиальной» или международной номенклатуре;
- **определять:** валентность и степень окисления химических элементов, тип химической связи в соединениях, заряд иона, характер среды в водных растворах неорганических соединениях, окислитель и восстановитель;
- **характеризовать:** элементы малых периодов по их положению в ПСХЭ; общие химические свойства металлов, неметаллов, основных классов неорганических соединений;
- **объяснять:** зависимость свойств веществ от их состава и строения; природу химической связи (ионной, ковалентной, металлической), зависимость скорости химической реакции и положения химического равновесия от различных факторов;
- **выполнять химический эксперимент** по распознаванию важнейших неорганических веществ;
- **проводить** самостоятельный поиск химической информации с использованием различных источников; Обучающийся должен использовать приобретённые знания и умения в практической деятельности и повседневной жизни для:
- > объяснения химических явлений, происходящих в природе, быту, на производстве;
- > экологически грамотного поведения в о.с.;
- > оценки влияния химического загрязнения о.с. на организм человека и другие живые организмы;
- ▶ безопасного обращения с горючими и токсичными веществами, лабораторным оборудованием;
- > приготовление растворов заданной концентрации в быту и на производстве.

Раздел 2. СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА

Тема 1. Строение атома (3 ч)

Атом - с ложная частиц а. Ядро и электронная оболочка. Электроны, протоны и нейтроны. Микромир и макромир. Дуализм частиц микромира,

Состояние электронов в атоме. Электронное облако и орбиталь. Квантовые числа. Форма орбиталей (s, p, d, f). Энергетические уровни и подуровни. Строение электронных оболочек атомов. Электронные конфигурации атомов элементов. Принцип Паули: и правило Гунда. Электронно-графические формулы атомов элементов. Электронная классификация элементов: s-,p-, d- и f-семейства.

Валентные возможности атомов химических элементов. Валентные электроны. Валентные возможности атомов химических элементов, обусловленные числом неспаренных электронов в нормальном и возбужденном: состояниях. Другие факторы, определяющие валентные возможности атомов: наличие неподеленных электронных пар и наличие свободных орбита-лей. Сравнение понятий «валентность» и «степень окисления».

Периодический закон и периодическая система химических элементов Д. И. Менделеева и строение атома. Предпосылки открытия периодического закона: накопление фактологического материала, работы предшественников (Й. Я. Берцелиуса, И. В. Деберейнера, А. Э. Шанкуртуа, Дж. А. Ньюлендса, Л. Мейепа); съезд химиков в Карлсруэ. Личностные качества Д. И. Менделеева.

Открытие Д. И. Менделеевым периодического закона. Первая формулировка, периодического закона. Горизонтальная, вертикальная и диагональная периодические зависимости.

Периодический закон и строение атома. Изотопы. Современная трактовка понятия «химический элемент». Закономерность Ван-ден-Брука-Ноэли. Вторая формулировка периодического закона. Периодическая система Д. И. Менделеева и строение атома. Физический смысл порядкового номера элементов, номеров группы и периода. Причины изменения металлических и неметаллических свойств элементов в группах и периодах, в том числе больших и сверхбольших. Третья формулировка периодического закона. Значение периодического закона и периодической системы химических элементов Д. И. Менделеева для развития науки и понимания химической картины мира.

Тема 2. Строение вещества. (14 ч)

Химическая связь. Единая природа химической связи. Ионная химическая связь и ионные кристаллические решетки, Ковалентная химическая связь и ее классификация: по механизму образования (обменный и донорно -акцепторный), по электроотрицательности (полярная и неполярная), по способу перекрывания электронных орбиталей (σ и π), по кратности (одинарная, двойная, тройная и полуторная). Полярность связи и полярность молекулы. Кристаллические решетки веществ с ковалентной связью: атомная и молекулярная. Металлическая химическая связь и металлические кристаллические решетки. Водородная связь: межмолекулярная и внутримолекулярная. Механизм образования этой связи, ее значение. Межмолекулярные взаимодействия. Единая природа химических связей: ионная связь как предельный случай ковалентной полярной связи; переход одного вида связи в другой; разные виды связи в одном веществе и т. д.

Свойства ковалентной химической связи. Насыщаемость, поляризуемость, направленность. Геометрия молекул.

Гибридизация орбиталей и геометрия молекул. sp3--Гибридизация у алканов, воды, аммиака, алмаза; «p2-гибридизация у соединений бора, алкенов, аренов, диенов и: графита; sp-гибридизация у соединений бериллия, алкинов и карбина. Геометрия молекул названных веществ.

Полимеры органические и неорганические. Полимеры. Основные понятия химии высокомолекулярных соединений: «мономер», «полимер», «макромолекула», «структурное звено», «степень полимеризации», «молекулярная масса». Способы получения полимеров: реакции полимеризации и поликонденсации. Строение полимеров: геометрическая форма, макромолекул, кристалличность и аморфность, стереорегулярность. Полимеры органические и неорганические. Каучуки. Пластмассы. Волокна. Биополимеры: белки и нуклеиновые кислоты. Неорганические полимеры атомного строения (аллотропные модификации углерода, кристаллический кремний, селен и теллур цепочечного строения, диоксид кремния и др.) и молекулярного строения (сера пластическая и др.).

Теория строения химических соединений А. М. Б у т л е р о в а. Предпосылки создания теории строения химических соединений: работы предшественников (Ж.Б.Дюма, Ф.Велер, Ш.Ф.Жерар, Ф.А.Кекуле), съезд естествоиспытателей в Шпейере. Личностные качества А. М. Бутлерова.

Основные положения теории химического строения органических соединений и современной теории строения. Изомерия в органической и неорганической химии. Взаимное влияние атомов в молекулах органических и неорганических веществ.

Основные направления развития, теории строения органических соединений (зависимость свойств веществ не только от химического, но и от их электронного и пространственного строения). Индукционный и мезомерный эффекты. Стереорегулярность.

Диалектические основы общности двух ведущих теорий химии. Диалектические основы общности периодического закона Д. И. Менделеева и теории строения А. М. Бутлерова в становлении (работы предшественников, накопление фактов, участие в съездах, русский менталитет), предсказании (новые элементы - Ga, Se, Ge и новые вещества — изомеры) и развитии (три формулировки).

Дисперсные системы. Понятие о дисперсных системах. Дисперсионная среда и дисперсная фаза. Типы дисперсных систем и их значение в природе и жизни человека. Дисперсные системы с жидкой средой: взвеси, коллоидные системы, их классификация. Золи и гели. Эффект Тиндаля. Коагуляция. Молекулярные и истинные растворы. Способы выражения концентрации растворов.

Расчетные задачи. 1. Расчеты, по химическим формулам. 2. Расчеты, связанные с понятиями «массовая доля» и «объемная доля компонентов смеси:. 3. Вычисление молярной концентрации растворов.

Демонстрации. Модели кристаллических решеток веществ с различным типом связей. Модели: молекул различной геометрии. Модели кристаллических решеток алмаза и графита. Модели молекул изомеров структурной и пространственной изомерии. Свойства толуола. Коллекция пластмасс и волокон. Образцы неорганических полимеров: серы пластической, фосфора красного, кварца и др. Модели молекул белков и ДНК. Образцы различных систем: с жидкой средой. Коагуляция, Эффект Тиндаля.

Лабораторные опыты. 1, Свойства гидроксидов элементов 3-го периода. 2. Ознакомление с образцами органических и неорганических полимеров.

Тема 3. Химические реакции (8 ч)

Классификация химических реакций в органической и неорганической химии. Понятие о химической реакции; ее отличие от ядерной реакции. Реакции, идущие без изменения качественного состава веществ: аллотропизация, изомеризация и полимеризация. Реакции, идущие с изменением состава веществ: по числу и составу реагирующих и образующихся веществ (разложения, соединения, замещения, обмена); по изменении:) степеней: окисления элементов (окислительно-восстановительные реакции и неокислительно-восстановительные реакции); по тепловому эффекту (экзо- и эндотермические); по фазе (гомо- и гетерогенные); по направлению (обратимые и необратимые); по использованию катализатора (каталитические и некаталитические); по механизму (радикальные и ионные); по виду энергии, инициирующей реакцию (фотохимические, радиационные, электрохимические, термохимические), Особенности классификации реакций в органической химии.

Вероятность протекания химических реакций. Закон сохранения энергии. Внутренняя энергия и экзо- и эндотермические реакции. Тепловой эффект химических реакций. Термохимические уравнения. Теплота образования. Понятие об энтальпии. Закон Г. И, Гесса и следствия из него. Энтропия. Энергия Гиббса. Возможность протекания реакций в зависимости от изменения энергии и энтропии.

Скорость химических реакций. Понятие о скорости, реакции. Скорость гомо- и: гетерогенной реакции. Энергия активации. Элементарные и сложные реакции. Факторы, влияющие на скорость химической реакции: природа реагирующих веществ; температура (закон: Вант-Гоффа); концентрация (основной закон химической кинетики); катализаторы. Катализ: гомо- и гетерогенный; механизм действия катализаторов. Ферменты. Их сравнение с неорганическими катализаторами. Ферментативный катализ, его механизм. Ингибиторы и каталитические яды. Зависимость скорости реакций от поверхности соприкосновения реагирующих веществ.

Обратимость химических реакций. Химическое равновесие. Понятие о химическом равновесии. Равновесные концентрации. Динамичность химического равновесия. Константа равновесия. Факторы, влияющие на смещение равновесия: концентрация, давление и температура. Принцип Ле Шателье.

Электролитическая диссоциация. Электролиты и неэлектролиты. Электролитическая диссоциация. Механизм диссоциации веществ с различным типом химической связи. Свойства ионов. Катионы и анионы. Кислоты, соли, основания в свете электролитической диссоциации. Степень электролитической диссоциации, ее зависимость от природы электролита и его концентрации. Константа диссоциации. Ступенчатая диссоциация электролитов. Реакции, протекающие в растворах электролитов. Произведение растворимости.

Водородный показатель. Диссоциация воды. Константа диссоциации воды. Ионное произведение воды. Водородный показатель рН. Среды водных растворов электролитов. Значение водородного показателя для химических и биологических процессов.

Гидролиз. Понятие «гидролиз». Гидролиз органических соединений (галогеналканов, сложных эфиров, углеводов, белков, АТФ) и его значение. Гидролиз неорганических веществ. Гидролиз солей — три случая. Ступенчатый гидролиз. Необратимый гидролиз. Практическое применение гидролиза.

Расчетные задачи. 1. Расчеты по термохимическим уравнениям. 2. Вычисление теплового эффекта реакции по теплотам образования реагирующих веществ и продуктов реакции. 3. Определениие рН раствора заданной молярной концентрации. 4. Расчет средней скорости реакции по концентрациям реагирующих веществ. 5. Вычисления с использованием понятия «температурный коэффициент скорости реакции». 6. Нахождение константы равновесия реакции по равновесным концентрациям: и определение исходных концентраций веществ.

Демонстрации. Превращение красного фосфора в белый, кислорода — в озон. Модели н-бутана и изобутана. Получение кислорода из пероксида водорода и воды; дегидратация этанола. Цепочка превращений; свойства соляной и уксусной кислот; реакции, идущие с образованием осадка, газа и воды; свойства металлов; окисление альдегида в кислоту и спирта в альдегид. Реакции горения; реакции эндотермические на примере реакции разложения (этанола, калийной селитры, известняка или мела) и экзотермические на. примере реакций соединения (обесцвечивание бромной воды и раствора перманганата калия этиленом, гашение извести и др.). Взаимодействие цинка с растворами соляной и серной кислот при разных температурах, при разных концентрациях соляной кислоты; разложение пероксида водорода с помощью оксида марганца (IV), каталазы сырого мяса и сырого картофеля. Взаимодействие цинка с различной поверхностью (порошка, пыли, гранул) с кислотой. Модель «кипящего слоя». Омыление жиров, реакции этерификации. Зависимость степени электролитической диссоциации уксусной кислоты от разбавления. Сравнение свойств 0,1 Н растворов серной и сернистой кислот; муравьиной и уксусной кислот; гидроксидов лития, натрия и калия. Индикаторы и изменение их окраски в различных средах. Сернокислый и ферментативный гидролиз углеводов, Гидролиз карбонатов, сульфатов, силикатов щелочных металлов; нитратов цинка или свинца (II). Гидролиз карбида кальция.

Лабораторные опыты. 3. Получение кислорода разложением пероксида водорода и (или) перманганата калия. 4. Реакции, идущие с образованием осадка, газа и воды для органических и неорганических кислот. 5. Использование индикаторной бумаги для определения рН слюны, желудочного сока и других соков организма человека. 6. Разные случаи гидролиза солей.

Тема 4. Вещества и их свойства (9 ч)

Классификация неорганических веществ. Простые и сложные вещества. Оксиды, их классификация. Гидроксиды (основания, кислородсодержащие кислоты, амфотерные гидроксиды). Кислоты, их классификация, Основания, их классификация. Соли средние, кислые, основные и комплексные.

Классификация органических веществ Углеводороды и классификация веществ в зависимости от строения углеродной цепи (алифатические и циклические) и от кратности связей (предельные и непредельные). Гомологический ряд. Производные углеводородов: галогеналканы, спирты, фенолы, альдегиды и кетоны, карбоновые кислоты, простые и сложные эфиры, нитросоединения, амины, аминокислоты.

Металлы. Положение металлов в периодической системе Д. И. Менделеева и строение их атомов. Простые вещества - металлы: строение кристаллов и металлическая химическая связь. Аллотропия. Общие физические свойства металлов. Ряд стандартных электродных потенциалов. Общие химические свойства металлов (восстановительные свойства): взаимодействие с неметаллами (кислородом, галогенами, серой, азотом, водородом), с водой, кислотами и солями в растворах, органическими соединениями (спиртами, галогеналканами, фенолом, кислотами), со щелочами. Значение металлов в природе и в жизни организмов.

Коррозия металлов. Понятие «коррозия металлов». Химическая коррозия. Электрохимическая коррозия. Способы защиты металлов от коррозии.

Общие способы получения металлов. Металлы в природе. Металлургия и ее виды: пиро-, гидро- и электрометаллургия. Электролиз расплавов и растворов соединений металлов и его практическое значение.

Переходные металлы. Железо. Медь, серебро; цинк, ртуть; хром, марганец (нахождение в природе; получение и применение простых веществ; свойства простых веществ; важнейшие соединения).

Неметаллы Положение неметаллов в периодической системе Д. И. Менделеева, строение их атомов. Электроотрицательность. Инертные газы. Двойственное положение водорода в периодической системе. Неметаллы простые вещества. Их атомное и молекулярное строение. Аллотропия и ее причины. Химические свойства неметаллов. Окислительные свойства; взаимодействие с металлами, водородом, менее электроотрицательными неметаллами, некоторыми сложными веществами. Восстановительные свойства неметаллов в реакциях со фтором, кислородом, сложными: веществами-окислителями (азотной и серной кислотами и др.).

Водородные соединения неметаллов. Получение их синтезом и косвенно. Строение молекул и кристаллов этих соединений. Физические свойства. Отношение к воде. Изменение кислотно-основных свойств в периодах и группах. Несолеобразующие и солеобразующие оксиды.

Кислородные кислоты. Изменение кислотных свойств высших оксидов и гидроксидов неметаллов в периодах и группах. Зависимость свойств кислот от степени окисления неметалла.

Кислоты органические и неорганические. Кислоты в свете протолитической теории. Сопряженные кислотно-основные пары. Классификация органических и неорганических кислот. Общие свойства кислот: взаимодействие органических и неорганических кислот с металлами, с основными оксидами, с амфотерными оксидами и гидроксидами, с солями, образование сложных эфиров. Особенности свойств концентрированной серной и азотной кислот. Особенности свойств уксусной и муравьиной кислот.

Основания органические и неорганические. Основания в свете протолитической теории. Классификация органических и неорганических оснований. Химические свойства щелочей и нерастворимых оснований. Свойства бескислородных оснований: аммиака и аминов. Взаимное влияние атомов в молекуле анилина.

Амфотерные органические и неорганические соединения. Амфотерные соединения в свете протолитической теории. Амфотерность оксидов и гидроксидов некоторых металлов: взаимодействие с кислотами и щелочами. Понятие о комплексных соединениях. Комплексообразователь, лиганды, координационное число, внутренняя сфера, внешняя: сфера. Амфотерность аминокислот: взаимодействие аминокислот со щелочами, кислотами, спиртами, друг с другом (образование полипептидов), образование внутренней соли: (биполярного иона).

Генетическая связь между классами органических и неорганических соединений. Понятие о генетической связи и генетических рядах в неорганической и органической химии. Генетические ряды металла (на примере кальция и железа), неметалла (на примере серы и: кремния), переходного элемента (на примере цинка). Генетические ряды и генетическая связь в органической химии (для: соединений, содержащих два атома углерода в молекуле). Единство мира веществ.

Расчетные задачи. 1. Вычисление массы или объема продуктов реакции по известной массе или объему исходного вещества, содержащего примеси. 2. Вычисление массы исходного вещества, если известен практический выход и массовая доля его от теоретически возможного. 8. Вычисления по химическим уравнениям реакций, если одно из реагирующих веществ дано в избытке. 4. Определение молекулярной формулы вещества по массовым долям элементов. 5. Определение молекулярной формулы газообразного вещества по известной относительной плотности и массовым долям элементов. 6. Нахождение молекулярной формулы вещества по массе (объему) продуктов сгорания. 7. Комбинированные задачи.

Демонстрации. Коллекция «Классификация неорганических веществ» и образцы представителей классов. Коллекция «Классификация органических веществ» и образцы представителей классов. Модели кристаллических решеток металлов. Коллекция металлов с разными физическими свойствами. Взаимодействие: а) лития, натрия, магния и железа с кислородом; б) щелочных металлов с водой, спиртами, фенолом; в) цинка с растворами соляной и серной кислот; г) натрия, с серой; д) алюминия с иодом; е) железа с раствором медного купороса; ж) алюминия с раствором едкого натра. Оксиды и гидроксиды хрома, их получение и свойства. Переход хромата в бихромат и обратно. Коррозия металлов в зависимости от условий. Защита металлов от коррозии: образцы «нержавеек», защитных покрытий. Коллекция руд. Электролиз растворов солей. Модели кристаллических решеток иода, алмаза, графита. Аллотропия фосфора» серы, кислорода. Взаимодействие: а) водорода с кислородом б) сурьмы с хлором; в) натрия с иодом: г) хлора с раствором бромида калия; д) хлорной и сероводородной воды; е) обесцвечивание бромной воды этиленом или ацетиленом. Получение и свойства хлороводорода, соляной кислоты и аммиака. Свойства соляной, разбавленной серной и уксусной кислот. Взаимодействие концентрированных серной, азотной кислоты и разбавленной азотной кислоты с медью. Реакция «серебряного зеркала» для муравьиной кислоты. Взаимодействие раствора гидроксида натрия с кислотными оксидами (оксидом углерода (IV)), амфотерными гидроксидами (гидроксидом цинка).

Лабораторные опыты. 7. Ознакомление с образцами представителей разных классов неорганических веществ. 8. Ознакомление с образцами представителей разных классов органических веществ 9. Ознакомление с коллекцией руд. 10. Сравнение свойств кремниевой, фосфорной, серной и хлорной кислот; сернистой и серной кислот; азотистой и азотной кислот. 11. Свойства соляной, серной (разб.) и уксусной кислот. 12. Взаимодействие гидроксида натрия с солями, сульфатом, меди (II) и хлоридом аммония. 13. Разложение гидроксида меди (II). Получение гидроксида алюминия и изучение его амфотерных свойств.

Раздел 3. ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

7.0		* 0	Количество ча-		
No	Название раздела	Количество ча-	сов по плану	Практические	Контрольные ра-
п/п		сов по про-		работы	боты
		грамме			
		3	3		
1	Тема 1. Строение атома и ПЗ Д.И. Менделеева				
		14	14	№ 1	№ 1
2	Тема 2. Строение вещества.			7/15 1	745 1
		8	8		N <u>o</u> 2
3	Тема 3. Химические реакции				J\ <u>©</u> ∠
		9	9	№ 2	№ 3
4	Тема 4. Вещества и их свойства			745 ₹	JN≌ 3
		34	34	2	2
	ИТОГО			<u> </u>	3

Приложение.

КАЛЕНДАРНО – ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ 11 класс

№п/п	Наименование разделов и тем уроков	Количе- ство ча- сов	Дата плани- руемая	Дата факти- ческая	Примечание
	Строение атома и периодически	й закон Д.І	 Менделеева (<u>(34)</u>	
1	Вводный, первичный инструктаж. Правила ТБ. Атом – сложная частица. Состояние электронов атомов.	1			
2	Электронные конфигурации атомов химических элементов	1			
3	ПЗ и ПСХЭ Д. И. Менделеева в свете учения о строении атома.	1			
	Строение вещ	ества (14ч)			
1 (4)	Химическая связь. Единая природа химической связи. Ионная химическая вязь. Ионная кристаллическая решетка	1			
2 (5)	Ковалентная связь. Атомная и молекулярная кристаллические решетки	1			

3 (6)	Металлическая связь. Металлическая кристаллическая решетка.	1		
4 (7)	Водородная связь. Единая природа химических связей.	1		
5(8)	Полимеры неорганические и органические	1		
6(9)	Газообразное состояние вещества	1		
7 (10)	Жидкое состояние вещества	1		
8 (11)	Твердое состояние вещества	1		
9 (12)	Практическая работа №1 «Получение, собирание и распознавание газов»	1		
10 (13)	Дисперсные системы	1		
11- 12 (14- 15)	Состав вещества и смесей	2		

13 (16)	Обобщение и систематизация знаний по теме «Строение вещества»	1						
14 (17)	Контрольная работа №1 по теме « Строение атома. Строение вещества»	1						
	Химические реакции (8ч)							
1 (18)	Понятие о химической реакции. Реакции идущие без изменения состава вещества.	1						
2 (19)	Классификация химических реакций, протекающих с изменением состава веществ.	1						
3 (20)	Тепловой эффект химической реакции. Почему идут химические реакции.	1						
4 (21)	Скорость химических реакций. Факторы, влияющие на скорость реакции. Скорость химических реакций. Факторы, влияющие на скорость реакции.	1						
5 (22)	Обратимость химических реакций. Химическое равновесие и условия, влияющие на его смещение.	1						
6 (23)	Окислительно - восстановительные реакции	1						

7 (24)	Электролитическая диссоциация. Реакции ионного обмена.	1						
8 (25)	Контрольная работа №2 по теме «Химические реакции»	1						
	Вещества и их свойства (9ч)							
1 (26)	Классификация неорганических и органических соединений.	1						
2 (27)	Классификация органических соединений.	1						
3 (28)	Металлы. Электролиз.	1						
4 (29)	Неметаллы. Оксиды неметаллов и соответствующие им гидроксиды.	1						
5 (30)	Кислоты неорганические и органические	1						
6 (31)	Основания органические и неорганические	1						
7 (32)	Практическая работа №2 «Решение экспериментальных задач»	1						

8 (33)	Генетическая связь органических и неорганических соединений.	1		
9 (34)	Контрольная работа №3 «Вещества и их свойства»	1		